Glycogen Synthase Kinase 3β Inhibition Improves Myocardial Angiogenesis and Perfusion in a Swine Model of Metabolic Syndrome

نویسندگان

  • Brittany A. Potz
  • Ashraf A. Sabe
  • Nassrene Y. Elmadhun
  • Richard T. Clements
  • Michael P. Robich
  • Neel R. Sodha
  • Frank W. Sellke
چکیده

BACKGROUND Inhibition of glycogen synthase kinase 3β (GSK-3β) has been reported to be cardioprotective during stressful conditions. METHODS AND RESULTS Pigs were fed a high-fat diet for 4 weeks to develop metabolic syndrome, then underwent placement of an ameroid constrictor to their left circumflex artery to induce chronic myocardial ischemia. Two weeks later, animals received either: no drug (high cholesterol control group [HCC]) or a GSK-3β inhibitor (GSK-3β inhibited group [GSK-3βI]), which were continued for 5 weeks, followed by myocardial tissue harvest. Coronary blood flow and vessel density were significantly increased in the GSK-3βI group compared to the HCC group. Expression levels of the following proteins were greater in the GSK-3βI group compared to the HCC group: vascular endothelial growth factor receptor 1 , vascular endothelial cadherin, γ-catenin, β-catenin, protein kinase B, phosphorylated forkhead box O1, and superoxide dismutase 2. CONCLUSIONS In the setting of metabolic syndrome, inhibition of GSK-3β increases blood flow and vessel density in chronically ischemic myocardium. We identified several angiogenic, cell survival, and differentiation pathways that include β-catenin signaling and AKT/FOXO1, through which GSK-3β appears to improve vessel density and blood flow. These results may provide a potential mechanism for medical therapy of patients suffering from coronary artery disease and metabolic syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen Synthase Kinase 3b Inhibition Improves Myocardial Angiogenesis and Perfusion in a Swine Model of Metabolic Syndrome

Methods and Results-—Pigs were fed a high-fat diet for 4 weeks to develop metabolic syndrome, then underwent placement of an ameroid constrictor to their left circumflex artery to induce chronic myocardial ischemia. Two weeks later, animals received either: no drug (high cholesterol control group [HCC]) or a GSK-3b inhibitor (GSK-3b inhibited group [GSK-3bI]), which were continued for 5 weeks, ...

متن کامل

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β

Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...

متن کامل

The Potential Role of Glycogen Synthase Kinase-3β in Neuropathy-Induced Apoptosis in Spinal Cord

Introduction: Glycogen Synthase Kinase-3β (GSK-3β) participates in several signaling pathways and plays a crucial role in neurodegenerative diseases, inflammation, and neuropathic pain. The ratio of phosphorylated GSK-3β over total GSK-3β (p-GSK-3β/t-GSK-3β) is reduced following nerve injury. Apoptosis is a hallmark of many neuronal dysfunctions in the context of neuropathic pain. Thus, this st...

متن کامل

Inducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia: a hypoxia-induced and glycogen-based energy prestorage strategy.

OBJECTIVE Ischemic tissue is an environment with limited oxygen and nutrition availability. The poor retention of mesenchymal stem cells (MSC) in ischemic tissues greatly limits their therapeutic potential. The aim of this study was to determine whether and how inducible metabolic adaptation enhances MSC survival and therapy under ischemia. APPROACH AND RESULTS MSC were subjected to glycogen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016